Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20243635

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a fatal pandemic viral disease caused by the severe acute respiratory syndrome corona virus type-2 (SARS-CoV-2). The aim of this study is to observe the associations of IL-6, SARS-COV-2 viral load (RNAemia), IL- 6 gene polymorphism and lymphocytes and monocytes in peripheral blood with disease severity in COVID-19 patients. This study was carried out from March 2021 to January 2022. RT-PCR positive 84 COVID-19 patients and 28 healthy subjects were enrolled. Blood was collected to detect SARS-COV-2 viral RNA (RNAemia) by rRT-PCR, serum IL-6 level by chemiluminescence method, SNPs of IL-6 by SSP-PCR, immunophenotyping of lymphocytes and monocyte by flow cytometry. Serum IL-6 level (pg/ml) was considerably high among critical patients (102.02 +/- 149.7) compared to severe (67.20 +/- 129.5) and moderate patients (47.04 +/- 106.5) and healthy controls (3.5 +/- 1.8). Serum SARS-CoV-2 nucleic acid positive cases detected mostly in critical patients (39.28%) and was correlated with extremely high IL-6 level and high mortality (R =.912, P < 0.001). Correlation between IL-6 and monocyte was statistically significant with disease severity (severe group, p < 0.001, and 0.867*** and critical group p < 0.001 and 0.887***). In healthy controls, moderate, severe and critically ill COVID-19 patients, IL-6 174G/C (rs 1800795) GG genotype was 82.14%, 89.20%, 67.85% and 53.57% respectively. CC and GC genotype had strong association with severity of COVID-19 when compared with GG genotype. Significant statistical difference found in genotypes between critical and moderate groups (p < 0.001, OR-10.316, CI-3.22-23.86), where CC genotype was associated with COVID-19 severity and mortality. The absolute count of T cell, B cell, NK cell, CD4+ T cells and CD8+ T cells were significantly decreased in critical group compared to healthy, moderate and severe group (P < 0.001). Exhaustion marker CD94/NKG2A was increased on NK cells and CD8+ cytotoxic T cell among critical and severe group. Absolute count of monocyte was significantly increased in critical group (P < 0.001). Serum IL-6, IL-6 174 G/C gene and SARS-CoV-2 RNAaemia can be used in clinical practice for risk assessment;T cell subsets and monocyte as biomarkers for monitoring COVID-19 severity. Monoclonal antibody targeting IL-6 receptor and NKG2A for therapeutics may prevent disease progression and decrease morbidity and mortality.Copyright © 2023 Elsevier Inc.

2.
European Journal of Human Genetics ; 31(Supplement 1):635-636, 2023.
Article in English | EMBASE | ID: covidwho-20243246

ABSTRACT

Background/Objectives: Corticosteroids are widely used for the treatment of coronavirus disease (COVID)-19 caused by SARS-CoV- 2 as they attenuate the immune response with their antiinflammatory properties. Genetic polymorphisms of glucocorticoid receptor, metabolizing enzymes or transporters may affect treatment response to dexamethasone. The aim of this study was to evaluate the association of polymorphisms in glucocorticoid pathway with disease severity and duration of dexamethasone treatment in COVID-19 patients. Method(s): Our study included 107 hospitalized COVID-19 patients treated with dexamethasone. We isolated DNA from peripheral blood and genotyped all samples for polymorphisms in NR3C1 (rs6198, rs33388), CYP3A4 (rs35599367), CYP3A5 (rs776746), GSTP1 (rs1695, rs1138272), GSTM1/GSTT1 deletions and ABCB1 (1045642, rs1128503, rs2032582 Fisher's and Mann- Whitney tests were used in statistical analysis. Result(s): The median (min-max) age of the included patients was 62 (26-85) years, 69.2 % were male and 30.8 % female and they had moderate (1.9 %), severe (83 %) or critical (15.1 %) disease. NR3C1 rs6198 polymorphism was associated with more severe disease in additive genetic model (P = 0.022). NR3C1 rs6198, ABCB1 rs1045642 and ABCB1 rs1128503 polymorphisms were associated with a shorter duration of dexamethasone treatment in additive (P = 0.048, P = 0.047 and P = 0.024, respectively) and dominant genetic models (P = 0.015, P = 0.048 and P = 0.020, respectively), while carriers of the polymorphic CYP3A4 rs35599367 allele required longer treatment with dexamethasone (P = 0.033). Other polymorphisms were not associated with disease severity or dexamethasone treatment duration. Conclusion(s): Genetic variability of glucocorticoid pathway genes was associated with the duration of dexamethasone treatment of COVID-19 patients.

3.
European Journal of Human Genetics ; 31(Supplement 1):706, 2023.
Article in English | EMBASE | ID: covidwho-20243198

ABSTRACT

Background/Objectives: Chemosensory dysfunction is a hallmark of SARS-CoV-2 infection;nevertheless, the genetic factors predisposing to long-term smell and taste loss are still unknown. This study aims to identify candidate genes possibly involved in persistent smell/taste loss through Whole Genome Sequencing (WGS) analysis of a large cohort of 130 fully characterised Italian individuals, previously diagnosed with COVID-19. Method(s): DNA of all analysed patients was used to perform WGS analysis, and a detailed personal anamnesis was collected. Moreover, orthonasal function was assessed through the extended Sniffin' Sticks test, retronasal function was tested with 20 powdered tasteless aromas, and taste was determined with validated Taste Strips. Self-reported smell and taste alterations were assessed via Visual Analog Scales plus questionnaires. Result(s): The clinical evaluation allowed to classify the patients in two groups: 88 cases affected by persistent smell dysfunction (median age, 49) and 42 controls (median age, 51). Among cases, 26.1% (n = 23) were functionally anosmic and 73.9% (n = 65) were hyposmic. Within cases, 77 underwent the taste strip test: 53.2% (n = 41) presented hypogeusia and 46.8% (n = 36) were normogeusic. Preliminary WGS results on a first subset of 76 samples confirmed the important role of UGT2A1 gene, previously described as involved in smell loss. Interestingly, we identified a nonsense variant (rs111696697, MAF 0.046) significantly associated with anosmia in males (p-value: 0.0183). Conclusion(s): Here, for the first time a large cohort of patients, fully characterised through a comprehensive psychophysical evaluation of smell and taste, have been analysed to better define the genetic bases of COVID-19-related persistent chemosensory dysfunction.

4.
Current Trends in Biotechnology and Pharmacy ; 17(2):907-916, 2023.
Article in English | EMBASE | ID: covidwho-20241386

ABSTRACT

The traditional de novo drug discovery is time consuming, costly and in some instances the drugs will fail to treat the disease which result in a huge loss to the organization. Drug repurposing is an alternative drug discovery process to overcome the limitations of the De novo drug discovery process. Ithelps for the identification of drugs to the rare diseases as well as in the pandemic situationwithin short span of time in a cost-effective way. The underlying principle of drug repurposing is that most of the drugs identified on a primary purpose have shown to treat other diseases also. One such example is Tocilizumab is primarily used for rheumatoid arthritis and it is repurposed to treat cancer and COVID-19. At present, nearly30% of the FDA approved drugs to treat various diseases are repurposed drugs. The drug repurposing is either drug-centric or disease centric and can be studied by using both experimental and in silico studies. The in silico repurpose drug discovery process is more efficient as it screens thousands of compounds from the diverse libraries within few days by various computational methods like Virtual screening, Docking, MD simulations,Machine Learning, Artificial Intelligence, Genome Wide Association Studies (GWAS), etc. with certain limitations.These limitationscan be addressed by effective integration of advanced technologies to identify a novel multi-purpose drug.Copyright © 2023, Association of Biotechnology and Pharmacy. All rights reserved.

5.
European Journal of Human Genetics ; 31(Supplement 1):343-344, 2023.
Article in English | EMBASE | ID: covidwho-20239389

ABSTRACT

Background/Objectives: One of the most remarkable features of SARS-CoV-2 infection is that a large proportion of individuals are asymptomatic while others experience progressive, even lifethreatening acute respiratory distress syndrome, and some suffer from prolonged symptoms (long COVID). The contribution of host genetics to susceptibility and severity of infectious disease is well-documented, and include rare monogenic inborn errors of immunity as well as common genetic variation. Studies on genetic risk factors for long COVID have not yet been published. Method(s): We compared long COVID (1534) to COVID-19 patients (96,692) and population controls (800,353) using both questionnaire and EHR- based studies. First meta-analysis of 11 GWAS studies from 8 countries did not show genome-wide significant associations. Result(s): Testing 24 variants earlier associated to COVID-19 susceptibility or severity by COVID-19 Host Genetics Initiative showed genetic variation in rs505922, an intronic variant in ABO blood group gene, to be associated with long COVID compared to population controls (OR = 1.16, 95% CI: 1.07-1.27, p = 0.033). (Within-COVID analysis gave similar OR, but was not significant after conservative Bonferroni correction (OR = 1.17, 95% CI: 1.06-1.30, p = 092)). Conclusion(s): The first data freeze of the Long COVID Host Genetics Initiative suggests that the O blood group is associated with a 14% reduced risk for long COVID. The following data freezes with growing sample sizes will possibly elucidate long COVID pathophysiology and pave the way for possible treatments for long lasting COVID symptoms.

6.
European Journal of Human Genetics ; 31(Supplement 1):342, 2023.
Article in English | EMBASE | ID: covidwho-20238003

ABSTRACT

Background/Objectives: Despite intensive research of the novel coronavirus SARS-CoV-2 and COVID-2019 caused by it, factors affecting the severity of the disease remains poorly understood. Clinical manifestations of COVID-2019 may vary from asymptomatic form to pneumonia, acute respiratory distress syndrome (ARDS) and multiorgan failure. Features of individual genetic landscape of patients can play an important role in development of the pathological process of COVID-19. In this regard the purpose of this study was to investigate the influence of polymorphic variants in genes (ADD1, CAT, IL17F, IL23R, NOS3, IFNL3, IL6, F2, F13A1, ITGB3, HIF1A, MMP12, VEGFA), associated with cardiovascular, respiratory and autoimmune pathologies, on the severity of COVID-19 and post-COVID syndrome in patients from Russia. Method(s): The study included 200 patients recovered from COVID-19. Two groups of patients were formed in accordance with clinical manifestations: with mild and moderate forms of the disease. The polymorphic variants were analysed with real-time PCR using commercial kits (Syntol). Result(s): 13 SNPs (rs4961;rs1001179;rs612242;rs11209026;rs2070744;rs8099917;rs1800795;rs1799963;rs5985;rs5918;rs11549465;rs652438;rs699947) were genotyped and comparative analysis of allele frequency distribution was carried out in two groups of patients recovered from COVID-2019. Conclusion(s): Identification of polymorphic variants in genome associated with severity of pathological processes in patients infected with SARS-CoV-2 can contribute to the identification of individuals with an increased risk of severe infection process and can also serve as a basis for developing personalized therapeutic approaches to the treatment of post-COVID syndrome.

7.
European Journal of Human Genetics ; 31(Supplement 1):704, 2023.
Article in English | EMBASE | ID: covidwho-20235931

ABSTRACT

Background/Objectives: The COVID-19 pandemic continues to threaten public health and burden healthcare systems worldwide. Whole SARS-CoV-2 genome sequencing has become essential for epidemiological monitoring and identification of new variants, which could represent a risk of increased transmissibility, virulence, or resistance to vaccines or treatment. In this study, we assess the performance of various target enrichment methods for whole SARS-CoV-2 sequencing. Method(s): We applied three target enrichment methods - two multiplex amplification methods and one hybridization capture - to the same set of nasopharyngeal patient samples (N = 93) in high-throughput mode. SARS-CoV-2 genome was obtained using short-read next-generation sequencing. Result(s): All three methods provided excellent breadth of coverage of SARS-CoV-2 genome (above 99%), albeit with vastly different sequencing depth (5-fold difference) and uniformity of coverage (20% difference in coefficient of variation). Poor local coverage has negative impact on variant calling in the concerned region, leading to an occasional allele drop-out (1.2% SNPs affected for one method). Conclusion(s): We discuss the performance of each target enrichment method and their potential for scaling up, in order to promote prospective programs of large-scale genomic surveillance of SARS-CoV-2 worldwide. Genomic surveillance will be crucial to overcoming the ongoing pandemic of COVID-19, despite its successive waves and continually emerging variants.

8.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20235730

ABSTRACT

Objective: During the COVID-19 pandemic, cancer patients had restricted access to standard of care tissue biopsy. Liquid biopsy assays using next generation sequencing technology provides a less invasive method for determining circulating tumour mutations (ctDNA) associated with targeted treatments or prognosis. As part of deploying technology to help cancer patients obtain molecular testing, a clinical program was initiated to offer liquid biopsy testing for Canadian patients with advanced or metastatic breast cancer. Method(s): Blood was drawn in two 10 mL StreckTM DNA BCTs and sent to the CAP/CLIA/DAP accredited Imagia Canexia Health laboratory for testing using the clinically validated Follow ItTM liquid biopsy assay. Plasma was isolated using a double spin protocol and plasma cell-free DNA (cfDNA) extracted using an optimized Promega Maxwell RSC method. Extracted cfDNA was amplified using the multiplex amplicon-based hotspot 30 or 38 gene panel and sequenced. An inhouse developed bioinformatics pipeline and reporting platform were used to identify pathogenic single nucleotide variants (SNVs), indels (insertions and deletions), and gene amplification. Included in the panel are genes associated with metastatic breast cancer: AKT1, BRAF, ERBB2, ESR1, KRAS, PIK3CA, TP53. Result(s): To identify biomarkers, 1214 metastatic or advanced breast cancer patient cfDNA samples were tested. There were 15 cases sent for repeat testing. We reported 48% of samples harboring pathogenic ctDNA mutations in TP53 (22%), PIK3CA (19%), ESR1 (18%), AKT1 (2%), ERBB2 (1.5%). Co-occurring variants were identified in samples with ESR1/PIK3CA as well as TP53/PIK3CA (both p-values <0.001). Interestingly, 29% of samples with mutated ESR1 harbored >= 2 ESR1 ctDNA mutations. In 56% of cases, previous molecular testing indicated the cancer subtype as hormone receptor (ER, PR) positive with/without HER2 negative status. In this specific subgroup, 49% harbored ctDNA mutations with 63% of those being PIK3CA and/or ESR1 mutations. Conclusion(s): A population of Canadian women with metastatic breast cancer were tested using a liquid biopsy gene panel during the COVID-19 pandemic for identification of biomarkers for targeted therapeutic options. Over 50% of the samples were identified as hormone positive, with greater than 60% harboring PIK3CA and ESR1 ctDNA mutations. Studies have shown that metastatic PIK3CA mutated ER-positive/HER2-negative tumors are predictive to respond to alpelisib therapy and have FDA and Health Canada approval. Additionally, ESR1 mutations are associated with acquired resistance to antiestrogen therapies, and interestingly we identified 29% of ESR1 mutated samples with multiple mutations possibly indicating resistance subclones. In future studies, longitudinal monitoring for presence of multiple targetable and resistance mutations could be utilized to predict or improve clinical management.

9.
European Journal of Human Genetics ; 31(Supplement 1):342-343, 2023.
Article in English | EMBASE | ID: covidwho-20235570

ABSTRACT

Background/Objectives: Runaway inflammation is a key feature of COVID-19. NR3C1 gene encodes for glucocorticoid receptor which plays an important role in inflammation reaction. The variant rs41423247 cause increased glucocorticoid receptors sensitivity. This study aimed to investigate the impact of variants of NR3C1 gene on the course of COVID-19 pneumonia in patients with necessarily artificial lung ventilation. Method(s): The study group included 20 patients (9 women and 11 men) with diagnosis viral COVID-19 pneumonia on artificial lung ventilation at the intensive care unit. All patients underwent daily standard examinations according clinical protocols. Determination of NR3C1 gene variants was carried out by using PCRRFLP. Result(s): There were found the significant negative correlations between NR3C1 gene variants and level of SpO2 (rS = -0.601, p = 0.008), Glasgow Coma Scale score (rS = -0.523, p = 0.026). Also, it was defined a protective effect of genotype CC at risk of development acute respiratory distress syndrome in this patients (chi2 = 4.38, p = 0.037, OR = 0.05 (CI:0.01-0.66)). Conclusion(s): The investigated variant rs41423247 of the NR3C1 gene may be the genetic predictor of complicated course of COVID-19 pneumonia. .

10.
Vestnik Rossijskoj Voenno-Medicinskoj Akademii ; 24(3):547-556, 2022.
Article in Russian | Scopus | ID: covidwho-20233669

ABSTRACT

The most significant single nucleotide human leukocyte antigen genes polymorphisms and innate immunity genes associated with varying degrees of acute respiratory infection severity are considered–COVID-19 caused by the SARS-CoV-2 coronavirus. As data accumulated, it became clear that the SARS-CoV-2 virus exhibits significant regional, ethnic, and individual specificity. This is due to the population groups' genetic characteristics. This is necessary to reliably know the human genotype relationship with the COVID-19 course severity (asymptomatic, mild, moderate, severe, and extremely severe up to fatal outcomes) for more successful therapy and vaccination. At the same time, it was also known that the innate immunity system is on the first line of defense against the pathogenic penetration into the body, and the human leukocyte antigen system encodes molecules of the same name on the surface of cells that present various antigens, including viral infection pathogens, and determine the severity of the course of many diseases;therefore, these systems' genes. This approach makes it possible to assess the likelihood of a severe and extremely severe disease course in healthy and infected people, which in turn contributes to the correct therapy strategy, pharmacotherapy, and vaccination, as well as to create new antiviral therapeutic and preventive medicines. The genetically determined immune response heterogeneity to SARS-CoV-2 infection requires further study, since there is no unambiguous opinion about the leading mechanism that determines disease severity. The article can be used under the CC BY-NC-ND 4.0 license © Authors, 2022.

11.
Vestnik Rossijskoj Voenno-Medicinskoj Akademii ; 25(1):145-154, 2023.
Article in Russian | Scopus | ID: covidwho-20233350

ABSTRACT

A problem of the novel coronavirus infection pandemic is the absence of specific biomarkers, the determination of which would make it possible to assess the likelihood of a severe disease course, development of complications, immediate and long-term consequences, and effective etiotropic (antiviral) therapy. The severity of the novel coronavirus infection depends on various factors such as the initial state of health, immune status, age, smoking status, concomitant cardiovascular diseases, and diabetes mellitus. However, a severe disease course is also observed in patients without the aforementioned risk factors. The development of the disease and its complications depends on sex and geographical identity. Angiotensin-converting enzyme 2 (ACE2), associated by gene-gene interaction with ACE, plays a main role in the pathogenesis of the penetration of severe acute respiratory syndrome-2 coronavirus into the cell. The main body of information on this problem is represented by systematic meta-analyses and results of single-center cohort studies, which offer insufficient information to unequivocally assert the associations of ACE and ACE2 gene polymorphisms with pathological changes in the circulatory system during and after a new coronavirus infection. Differences in the incidence of ACE and ACE2 alleles may explain the differences between susceptible populations and/or response to the severe coronavirus infection. The above studies were carried out on the effect of the coronavirus in the initial period of the pandemic. For a more complete molecular genetic picture of the influence of polymorphism, persons with different strains of the coronavirus must be considered. In addition, no data are available regarding the expressions of ACE and ACE2 genes in response to a coronavirus infection. Moreover, the identification of the polymorphic variants of the genes of the renin–angiotensin–aldosterone system and ACE2 associated with a high risk of developing and worsening cardiovascular diseases may be one of the promising areas for the early diagnosis and prevention of post-COVID-19 changes. Therefore, all scientific interest research is aimed at studying genetic factors, such as single nucleotide polymorphisms that affect susceptibility to infection, severity of the disease course, and development of circulatory system consequences. In general, polymorphic variants of ACE and ACE2 and their interaction will help us understand this problem and systematize knowledge for further research in this area. All rights reserved © Eco-Vector, 2022.

12.
Latin American Journal of Pharmacy ; 42(Special Issue):108-113, 2023.
Article in English | EMBASE | ID: covidwho-20231972

ABSTRACT

SUMMARY. Different genetic and immunological factors can affect the severity of Coronavirus disease 19. Angiotensin-converting enzyme 2 is a human receptor for Severe Acute Respiratory Syndrome Coro-navirus-2, and the successful interaction between the spike protein of the novel virus and Angiotensin-converting enzyme 2 is responsible for the initial and complete infection. The study aimed to evaluate the correlation between Single Nucleotide Polymorphisms of Angiotensin converting-enzyme 2, with disease severity of Coronavirus disease 19 in AL-Najaf province. The allele Specific-polymerase Chain reaction method was used for investigating Single Nucleotide polymorphisms of Angiotensin converting-enzyme 2 rs4646116 A/G in different states of Coronavirus disease 19 (COVID-19). The wild genotypes (GG) for ACE2 rs4646116 gene recorded a highly significant association p = 0.0009, and a high ratio in the control group (90%) in comparison with moderate cases of COVID-19 (60%). While the heterozygote genotype (GA) of the same gene showed a significant (p-value = 0.0144) and high ratio in moderate cases (30%) in comparison with the control group (10%). Conclusion(s): the wild genotype (GG) for Angiotensin convert-ing-enzyme 2 rs4646116 gene may be associated with more protection from infection with COVID-19. While the polymorphism heterozygote genotype (GA) for the same gene may be associated with more susceptibility to infection with COVID-19.Copyright © 2023, Colegio de Farmaceuticos de la Provincia de Buenos Aires. All rights reserved.

13.
Biochem Genet ; 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20240926

ABSTRACT

Neuropilin-1 (NRP1) which is a main transmembrane cell surface receptor acts as a host cell mediator resulting in increasing the SARS-Cov-2 infectivity and also plays a role in neuronal development, angiogenesis and axonal outgrowth. The goal of this study is to estimate the impact of single nucleotide polymorphisms (SNPs) in the NRP1 gene on the function, structure and stabilization of protein as well as on the miRNA-mRNA binding regions using bioinformatical tools. It is also aimed to investigate the changes caused by SNPs in NRP1 on interactions with drug molecule and spike protein. The missense type of SNPs was analyzed using SIFT, PolyPhen-2, SNAP2, PROVEAN, Mutation Assessor, SNPs&GO, PhD-SNP, I-Mutant 3.0, MUpro, STRING, Project HOPE, ConSurf, and PolymiRTS. Docking analyses were conducted by AutoDock Vina program. As a result, a total of 733 missense SNPs were determined within the NRP1 gene and nine SNPs were specified as damaging to the protein. The modelling results showed that wild and mutant type amino acids had some different properties such as size, charge, and hydrophobicity. Additionally, their three-dimensional structures of protein were utilized for confirmation of these differences. After evaluating the results, nine polymorphisms rs141633354, rs142121081, rs145954532, rs200028992, rs200660300, rs369312020, rs370117610, rs370551432, rs370641686 were determined to be damaging on the structure and function of NRP1 protein and located in conserved regions. The results of molecular docking showed that the binding affinity values are nearly the same for wild-type and mutant structures support that the mutations carried out are not in the focus of the binding site, therefore the ligand does not affect the binding energy. It is expected that the results will be useful for future studies.

14.
Infectious Diseases: News, Opinions, Training ; 11(3):130-137, 2022.
Article in Russian | EMBASE | ID: covidwho-2323992

ABSTRACT

The incidence of new coronavirus infection (COVID-19) varies significantly between countries and continents. Until now, there has been no clear explanation for this observation. Epidemiological studies have demonstrated a large difference in infection and mortality rates between men and women. This may be due to the gender difference in the polymorphism of genes linked to the X chromosome, which play an important role in the immune response. In addition, there is a different degree of severity of the disease: from an asymptomatic course and mild symptoms to a life-threatening condition requiring hospitalization in the intensive care unit and artificial lung ventilation. Several factors are associated with the severity of COVID-19, such as elderly age, multiple comorbid diseases, smoking, hypercholesterolemia, etc. However, we observe that severe disease is also observed in patients who do not have the above risk factors. In recent months, severe forms of COVID-19 have been reported in children, including early infancy. In this connection, it is relevant, in our opinion, to focus the problem on genetic factors, such as the carriage of single-nucleotide polymorphisms, which can affect susceptibility to infection and variability in the severity of the disease.Copyright © 2022 Sorbtsionnye i Khromatograficheskie Protsessy. All rights reserved.

15.
Rheumatology ; 62(Supplement 2), 2023.
Article in English | EMBASE | ID: covidwho-2321647

ABSTRACT

The proceedings contain 343 papers. The topics discussed include: implementation of a disease modifying anti-rheumatic drug blood monitoring software: 8 years of experience in a single center;effectiveness of colchicine among patients with COVID-19 infection: a randomized, open labelled, clinical trial;rheumatic autoimmune diseases following COVID-19 infection: an observational study in Iraqi Kurdistan region;COVID-19 in male elite Irish-based athletes at a national sports institute;the effects of a pain management program for patients with an inflammatory arthritis;a retrospective analysis of the effectiveness safety of platelet rich plasma injections in primary osteoarthritis in knee joint, in patients attending a tertiary care hospital, Sri Lanka;a cohort study;do proformas used in fracture liaison service appointments reflect national osteoporosis clinical standards? a content analysis;calcium pyrophosphate dihydrate crystal in operated rheumatoid arthritis of the knee;cardiac amyloidosis: a case series of 31 patients with a comprehensive literature review;scoping review for the application of center of pressure for patient or intervention assessment in rheumatoid conditions;and four SNPs associated with monocyte/macrophage cell lineage uniquely associated with CRPS-1 in discovery and replication cohorts and suggest predisposition to regional osteopenia and digit misperception.

16.
Annals of Blood ; 6 (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2327184

ABSTRACT

The A and B oligosaccharide antigens of the ABO blood group system are produced from the common precursor, H substance, by enzymatic reactions catalyzed by A and B glycosyltransferases (AT and BT) encoded by functional A and B alleles at the ABO genetic locus, respectively. In 1990, my research team cloned human A, B, and O allelic cDNAs. We then demonstrated this central dogma of ABO and opened a new era of molecular genetics. We identified four amino acid substitutions between AT and BT and inactivating mutations in the O alleles, clarifying the allelic basis of ABO. We became the first to achieve successful ABO genotyping, discriminating between AA and AO genotypes and between BB and BO, which was impossible using immunohematological/serological methods. We also identified mutations in several subgroup alleles and also in the cis-AB and B(A) alleles that specify the expression of the A and B antigens by single alleles. Later, other scientists interested in the ABO system characterized many additional ABO alleles. However, the situation has changed drastically in the last decade, due to rapid advances in next-generation sequencing (NGS) technology, which has allowed the sequencing of several thousand genes and even the entire genome in individual experiments. Genome sequencing has revealed not only the exome but also transcription/translation regulatory elements. RNA sequencing determines which genes and spliced transcripts are expressed. Because more than 500,000 human genomes have been sequenced and deposited in sequence databases, bioinformaticians can retrieve and analyze this data without generating it. Now, in this era of genomics, we can harness the vast sequence information to unravel the molecular mechanisms responsible for important biological phenomena associated with the ABO polymorphism. Two examples are presented in this review: the delineation of the ABO gene evolution in a variety of species and the association of single nucleotide variant (SNV) sites in the ABO gene with diseases and biological parameters through genome-wide association studies (GWAS).Copyright © Annals of Blood. All rights reserved.

17.
Angew Chem Int Ed Engl ; : e202304298, 2023 May 22.
Article in English | MEDLINE | ID: covidwho-2322380

ABSTRACT

Mass pathogen screening is critical to preventing the outbreaks and spread of infectious diseases. The large-scale epidemic of COVID-19 and the rapid mutation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus have put forward new requirements for virus detection and identification techniques. Here, we report a CRISPR-based Amplification-free Viral RNA Electrical Detection platform (CAVRED) for the rapid detection and identification of SARS-CoV-2 variants. A series of CRISPR RNA assays were designed to amplify the CRISPR-Cas system's ability to discriminate between mutant and wild RNA genomes with a single-nucleotide difference. The identified viral RNA information was converted into readable electrical signals through field-effect transistor biosensors for the achievement of highly sensitive detection of single-base mutations. CAVRED can detect the SARS-CoV-2 virus genome as low as 1 cp µL-1 within 20 mins without amplification, and this value is comparable to the detection limit of real-time quantitative polymerase chain reaction. Based on the excellent RNA mutation detection ability, an 8-in-1 CAVRED array was constructed and realized the rapid identification of 40 simulated throat swab samples of SARS-CoV-2 variants with a 95.0 % accuracy. The advantages of accuracy, sensitivity, and fast speed of CAVRED promise its application in rapid and large-scale epidemic screening.

18.
ACS Sens ; 8(5): 2096-2104, 2023 05 26.
Article in English | MEDLINE | ID: covidwho-2327385

ABSTRACT

The large-scale pandemic and fast evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have triggered an urgent need for an efficient and sensitive on-site nucleic acid testing method with single-nucleotide polymorphism (SNP) identification capability. Here, we report a multiplexed electrical detection assay based on a paperclip-shaped nucleic acid probe (PNprobe) functionalized field-effect transistor (FET) biosensor for highly sensitive and specific detection and discrimination of SARS-CoV-2 variants. The three-stem structure of the PNprobe significantly amplifies the thermodynamic stability difference between variant RNAs that differ in a single-nucleotide mutation. With the assistance of combinatorial FET detection channels, the assay realizes simultaneously the detection and identification of key mutations of seven SARS-CoV-2 variants, including nucleotide substitutions and deletions at single-nucleotide resolution within 15 min. For 70 simulated throat swab samples, the multiplexed electrical detection assay shows an identification accuracy of 97.1% for the discrimination of SARS-CoV-2 variants. Our designed multiplexed electrical detection assay with SNP identification capability provides an efficient tool to achieve scalable pandemic screening.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , Nucleic Acid Probes , Nucleotides
19.
VirusDisease ; 34(1):102, 2023.
Article in English | EMBASE | ID: covidwho-2315190

ABSTRACT

Background: The pathophysiology of viral-infections is highly complex and involves host immunocompetence, host genetics, and gene-environment interactions. We hypothesized that polymorphic variants in host genes, blood group and previous vaccination status against H1N1 may affect the clinical course of covid-19 infection. Method(s): A total of 202 subjects who were RT-PCR negative after Covid-19 infection were recruited. We investigated association between Covid-19 infection (Severity and recovery period) and multiple factors including ABO and Rh blood groups, H1N1 vaccination, polymorphism in Viral susceptibility genes (ACE2 G8790A), and polymorphism in host response genes (ACE I/D rs4646994, IL6- 174G/C, GSTT1/GSTM1 I/D and GSTP1 Ile 105 Val). Result(s): B-ve and O-ve ABO and Rh blood groups had significantly higher Covid-19 recovery period applied on one-vs.-all in a nonparametric t-test (p<0.05). Subjects who had vaccinated themselves against H1N1 presented with a lower recovery-period (p<0.05). Both variables (blood group and H1N1 vaccination) were not however associated with Covid-19 severity. Out of the studied polymorphisms, ACE2 G8790A and GSTT1/GSTM1 were significantly associated with covid-19 infection. Our results indicated that G/G genotype of ACE2 G8790A (OR 3.52, P 0.007) and GSTT1/ GSTM1 null (M1 - / - OR = 3.98, P = 0.0004;T1 - / - OR 3.84, P = 0.004) and double null (M1 - / - /T1 - / - OR = 9.66, P = 0.001) are likely to be associated with an increased risk for severe-critical outcomes in individuals with COVID-19. Other polymorphisms analyzed in this study were found to have no significant association with Covid-19 outcome. Conclusion(s): This study suggests that outcome of Covid-19 infection is affected by both clinical and genetic factors. Thus it seems plausible to utilize these factors as prediction and susceptibility markers in the prognosis of COVID-19, which may help to personalize the treatment.

20.
Turkish Journal of Biochemistry ; 47(Supplement 1):80-81, 2022.
Article in English, Turkish | EMBASE | ID: covidwho-2314893

ABSTRACT

Objectives: Toll-like receptors (TLRs) are an important family of receptors that recognize infectious agents and play an important role in the innate immune system. TLRs are a potential candidate to control infection in the early stages of the disease and to produce vaccines against SARS-CoV-2. In addition, studies have suggested that TLR polymorphisms are also associated with antiviral responses against SARS-CoV-2. Therefore, we aimed to investigate the relationship of TLR7 and TLR8 polymorphisms with COVID-19 disease prognosis. Materials-Methods: A total of 120 COVID-19 patients, including 40 outpatients, 40 patients with mild and moderate clinical status, hospitalized and severe pneumonia, and 40 patients followed in the intensive care unit (ICU), were included in the study. The classification of disease severity was made according to WHO criteria. TLR7 (rs179009), TLR8 -129 C/G (rs3764879) and TLR8 Met1Val (rs3764880) polymorphisms were genotyped using the PCR-RFLP method. Result(s): Since TLR7 and TLR8 are located on the X chromosome, men and women were analyzed separately. There was no significant difference between the groups in terms of 3 polymorphisms in males. On the other hand, in women, individuals carrying AG genotype and G allele for TLR8 Met1Val polymorphism were found at a higher rate in patients hospitalized in ICU than in patients followed in the service (p <0.05). In terms of the other two polymorphisms, no significant difference was found between the groups in women. Conclusion(s): We suggest that the AG genotype and G allele of TLR8 Met1Val polymorphism can be considered as an important risk factor that increases the severity of the disease in women.

SELECTION OF CITATIONS
SEARCH DETAIL